Osteopathic Manipulation in the Management Autonomic Neuropathy

Joshua Alexander, DO, MPH
Scripps Clinic
Objectives

• Differentiate large fiber, small fiber, & autonomic, polyneuropathy
• Describe features of POTS
• Formulate treatment for autonomic neuropathy using osteopathic manipulation
Roadmap

• Basic Polyneuropathy Review
• Small Fiber Neuropathy Refresher
• Autonomic neuropathy
 – All of this is to argue that OMM has a role in management of dysautonomia
• Some Anatomy of course
• Application of osteopathic manipulation
Polyneuropathy

• Impairment of multiple peripheral nerves
 – Sensory, motor, or autonomic
 – Small, large, or autonomic fibers

• Small fibers
 – Pain and temperature carried on small unmyelinated or thinly myelinated fibers
 – Symptoms: burning or temperature changes

• Large fibers
 – A alpha and A beta large fibers – sensory
 – A gamma – motor
 – Vibration, proprioception, touch/2-point discrimination, loss of bulk
 – Symptoms: tingling, pins and needles
Polyneuropathy

• Large Fiber
 – Axonal, Demyelinating, or Mixed
 – Motor vs Sensory vs Mixed

• Autonomic Neuropathy covered in detail later
 – Carried on unmyelinated or thinly myelinated fibers

• Small Fiber Neuropathy and Autonomic Neuropathy often accompany each other
 – More on this in less than a minute
Polyneuropathy

• Anatomic Distribution
 – Typically length dependent affecting the lower limbs first
 – Think Stocking Glove
 • The glove is usually not affected till the the lower limbs are involved up to the knees
 – There are many exceptions

• A good resource is: https://neuromuscular.wustl.edu
Pathophysiology

- Axonal degeneration
 - most common
 - “Dying back”
 - Most distal part of the axon dies
 - Typical distal symmetric polyneuropathy
 - Usually toxic or metabolic
 - Symptomatic/supportive

- Wallerian degeneration
 - Distal degradation
 - Trauma or nerve infarction
 - Symptomatic/supportive/time

- Segmental demyelination
 - Axon spared
 - Nerve sheath impaired
 - Can be focal mononeuropathy but more often seen in immune mediated/inflammatory polyneuropathy
 - Medical management
Small Fiber

• Thinely myelinated $A\delta$
 – Mechanoreceptors and thermoreceptors
 – Pain
 – Cold
 – Preganglionic fibers (ANS)

• Unmyelinated C fibers
 – Polymodal receptors
 – Nociception – burning pain
 – Itching
 – Warm
 – Maybe cold
 – Postganglionic fibers
 • Sweat glands, blood vessels, heart, etc
Small Fibers

• Sit in the dermis
• Exact pathophysiology of their neuropathy is unknown
 – Autoantibodies to neuronal proteins
 – Inflammatory cytokines
 – Dermal vasculitis
Small Fiber Neuropathy Diagnosis

- **Possible**
 - Length-dependent symptoms
 - Loss of Pin/temp; allodynia/hyperalgesia
- **Probable**
 - Length dependent
 - Loss of Pin/temp; allodynia/hyperalgesia
 - Normal NCS
- **Definite**
 - Length dependent symptoms
 - Loss of Pin/temp; allodynia/hyperalgesia
 - Normal NCS
 - Reduced epidermal nerve fiber density at the ankle (Skin Biopsy) OR abnormal QST (quantitative sensory testing)

Small Fiber Neuropathy Etiology

- **Metabolic**
 - Pre-diabetes/diabetes/abnormal glucose metabolism or rapid correction
 - Vitamin B12 deficiency
 - Dyslipidemia
 - Hypothyroidism
 - CKD
- **Immune**
 - Sjogren’s
 - Celiac
 - Sarcoid
 - RA
 - SLE
 - Vasculitis
 - Inflammatory Bowel Disease
 - Paraneoplastic
 - Monoclonal Gammopathy
 - Amyloid
- **Infection**
 - HIV
 - Hepatitis C
 - Influenza
- **Toxins**
 - ARV
 - Antibiotics
 - Chemotherapy
 - Flecanide
 - Statin
 - EtOH
 - Statin
 - Vitamin B6
- **Primary Hereditary**
 - Nav 1.7 and 1.8 mutations
 - Familial Amyloid Angiopathy
 - Fabry’s
 - Tangier’s
- **Primary Idiopathic**
 - Idiopathic SFN
 - Burning Mouth Syndrome
Autonomic Nervous System

• Sympathetic
• Parasympathetic
• Enteric
Sympathetic

- Hypothalamus to the intermediolateral gray cell column in the spinal cord (1st order efferent)
 - Somatotopic organization
- Preganglionic axons from the cord project to the postganglionic neurons (2nd order efferent) on the paravertebral sympathetic ganglia at their level, above, or below
 - 3 cervical, 10-12 thoracic, 4 lumbar and 4-5 sacral
 - Most are paired ganglia
Sympathetic

- Superior cervical ganglion
- Middle cervical ganglion
- Inferior cervical ganglion
 - Inferior can fuse with the upper thoracic ganglia
Sympathetic Nervous System

• Caudal most ganglia at the coccyx form the unpaired ganglion impar
Sympathetic Nervous System

- From paravertebral ganglion the sympathetics travel with spinal nerves, cranial nerves, or blood vessel wall to their target.
Parasympathetic

• Brainstem and sacrum

• Parasympathetic preganglionic neurons
 – Eddinger-Westphal (III) in rostral midbrain
 – Superior salivatory and lacrimal nuclei (VII) in the pontine tegmentum
 – Inferior salivatory nucleus (IX) periventricular gray – rostral medulla
 – Nucleus ambiguus (X) – medulla reticular formation posterior to the inferior olivary nucleus
 • Oropharynx
 – Dorsal Motor Nucleus (X) – floor of the forth ventricle
 • Thorax and abdomen
 – CN X has the largest group of parasympathetic fibers in the body
Nucleus Tractus Solitarius

• Receives sensory input from a number of cranial nerves including Vagus.
• Carotid body, aortic bodies, SA node via the vagus
• Taste, sensation to the middle ear
• Receives input from the heart, lungs, GI, liver, etc
• There is a lot of vagal tone set through here because of this
• Autonomic Reflex zone
Dorsal Motor Nucleus X

- Please reference Netter
ANS

• Bidirectional connected between target and central autonomic network
• Central Autonomic Network (CAN)
 – Medial prefrontal cortex
 – Insular cortex
 – Central nucleus of the amygdala
 – Hypothalamus
 – Periaqueductal gray
 – Parabrachial nuclear complex
 – Nucleus Ambiguus
 – Nucleus Tractus solitarius
• R. Paul Lee, DO describes a release for this CAN
 – We will not do it here
ANS Dysfunction

Dry Mucus membranes
Anhydrosis
Abnormal pupils
Constipation/Diarrhea
Vomiting
Abdominal pain
Early satiety/anorexia
Intestinal pseudo-obstruction

Urinary retention
Skin color changes
Abnormal heart rate
Orthostasis
Erectile dysfunction
Etiology

- Diabetes
- Multisystem Atrophy
- Guillain-Barre
- Sjogren’s Syndrome
- Paraneoplastic
 - Small cell lung cancer
- HIV
- Botulism
- Chagas (now in the US)
- Diphtheria
- Leprosy
- Rabies

- Acute Dysautonomia
- Parkinsonism
- Neuronal intranuclear inclusion disease
- Myopathy and external ophthalmoplegia, neuropathy, gastro intestinal encephalopathy
- A number of hereditary conditions
POSTURAL ORTHOSTATIC TACHYCARDIA SYNDROME
POTS

- These patients range from mildly impaired to bedridden
- They were usually normal productive people before
 - This can be lost on the medical system
 - In severe cases their lives are usually destroyed and they just want to be normal
 - Labeled psychiatric
 - Symptoms confused with anxiety
 - Especially since it affects women more than men
- They will search for exotic diagnoses
- They will need a lot of hand holding and TLC
- Severe cases may take years to recover
 - 1 year OMM, 1 year PT, then additional OMM
POTS - Autonomic Neuropathy

• Some estimates are that 1% of US population has POTS
• Heart rate increase ≥ 30 bpm within 10 min of upright posture in adults. Heart rate increase of ≥ 40 bpm within 10 min is required in adolescents age 12–19 years
• Absence of orthostatic hypotension defined as a sustained drop in blood pressure $\geq 20/10$ mm Hg within 3 min of upright posture
• Symptoms of orthostatic intolerance for ≥ 6 months
• Absence of overt causes for sinus tachycardia such as acute physiological stimuli, dietary influences, other medical conditions and medications
• Tilt table test with or w/o sudomotor testing and transcranial doppler
POTS

- Female:Male 4:1
- Typically 13-50 years old
- **13% with family history**
- Heterogeneous (Cardiogenic vs neurogenic vs **structural***)
- Start after acute stress
 - Surgery, viral illness, MVC etc.
- Blurry vision, brain fog, cognitive dysfunction, chest pain, lightheaded, nausea, fatigue, constipation, acrocyanosis, sleep abnormalities, anxious/brainstem feeling
- Only about 30% have syncope
- Look for **Ehler’s Danlos Type III***, Mast Cell Activation Syndrome, Chronic Fatigue Syndrome, migraine, fibromyalgia, Sjogren’s and other autoimmune conditions, GI problems (bloating, chronic constipation)
Pathophysiology

- 50% of POTS patients have distal small fiber neuropathy with sympathetic denervation
 - Patient may not be aware of the neuropathy
 - Impaired peripheral vascular resistance in the legs when standing due to blunted norepinephrine there
 - Causes excessive venous pooling
 - Sympathetic activation
 - Increase heart rate to maintain blood pressure
Pathophysiology

• 50% have **Hyperadrenergic state**
• Excessive orthostatic tachycardia
• Might be related to excessive interleukin-6
• Usually from hypovolemia or partial sympathetic denervation
• Test orthostatic catecholamines 15 minutes supine then 15 minutes standing (okay to lean against a wall)
Pathophysiology

• Norepinephrine transporter deficiency
 – Causes loss of sympathetic activation by decreasing amount of NE taken up at the synapse
 – Gene SLC6A2
 – Tricyclic antidepressants, serotonin-norepinephrine reuptake inhibitors, atomoxetine impact NET
Pathophysiology

- **Hypovolemia**
 - Low blood volume with decreased red blood cell count
 - 13% deficit in plasma volume in POTS
- Thought to cause lower stroke volume and compensatory tachycardia
- Impaired vascular and renal response to hypovolemia
 - Angiotensin II levels are high and BP is normal
- **Fluid responsive**
 - Give Lactated Ringers or isotonic saline
 - Oral rehydration

• Figures 3 and 4
Pathophysiology

• Immune mediated (some studies show 20%)
• Antibodies to ganglionic acetylcholine receptor
• Antibodies to alpha 1 and beta adrenergic receptors and cardiac lipid proteins
• Non-specific markers (e.g., ANA) positive in 25% while 31% have some antibody +
• IgG against cardiac proteins – 40 identified

POTS association:
• Sjögren syndrome
• Ankylosing spondylitis
• Antiphospholipid syndrome
• Behcet's disease
• Celiac disease
• Chronic immune demyelinating polyneuropathy
• Inflammatory bowel disease (Crohn and ulcerative colitis)
• Hashimoto's thyroiditis
• Multiple sclerosis
• Neuromyelitis optica
• Rheumatoid arthritis
• Sarcoidosis
• Systemic lupus erythematosus
• Juvenile rheumatoid arthritis
• Adult Still's disease
• Undifferentiated connective tissue disease
Pathophysiology

• Impaired cerebral autoregulation
• Orthostatic intolerance despite normal blood pressure
 – Is this problem central rather than peripheral?
Pathophysiology

• Deconditioning – not sure if this is primary or secondary
• Aerobic exercise is critical
• Is the heart too small?
Structural Associations

- Thoracic Outlet Syndrome
 - Stellate ganglion compression?
- Hypermobility – Ehlers Danlos type 3
 - Also associated with Mast Cell Activation Syndrome
- Maybe Chiari Malformation
- Eagle syndrome
 - Elongated styloid
 - Compression of CN X, IX, carotid
Structural Associations

• Median arcuate ligament syndrome
 – intermittent obstruction of celiac or superior mesenteric arteries by the median arcuate ligament
 • celiac plexus compression
 – postprandial or post-exertional abdominal pain

• Pelvic vein varicosities
 – Venous pooling
A role for the Vagus Nerve in Treatment?

• Vagal nerve stimulation
 – Anti-inflammatory
 – Shown to improve rheumatoid arthritis, Crohn’s, Sjogrens

• Regular exercise improves vagal tone
• Anti-inflammatory diet
• Acupuncture
• Biofeedback
• Music therapy
• Meditation
Treatment

- A great cardiologist or autonomic neurologist
- Increased sodium and fluid intake
- Compression stockings
- **Aerobic exercise**
- Isotonic saline/Lactated Ringers infusions
- Beta blockers
 - Metoprolol
 - Corlanor
- Alpha 1 agonist: Midodrine
- Florinef in some cases
- L-Dopa, carbidopa
- SSRI/SNRI
- IVIG/Plasma Exchange/steroids/Rituximab
POTS Additional Information

IS THERE A ROLE FOR OMT?
OMT for POTS

• Goodkin and Bellew 2014 describe OMT for POTS
 – 26 year old female with fatigue, pre-syncope, heat intolerance, cognitive dysfunction, diffuse joint pain, insomnia, jaw injury
 – POTS diagnosed, partial response to Florinef, midodrine
 – Ligamentous articular strain
 – Osteopathic cranial manipulative medicine
 – Pre-treatment – could only tolerate 5 minutes in a hot shower
 – Post treatment – 45 minutes
 – Was able to reduce midodrine and amphetamine for 8 days
 – Treated again and this time improved for 8 weeks
 – Treated a 3rd time 28 days later and remained controlled at her 18 month follow-up
 – JAOA Nov 2014;114:874-877
OMT for POTS – GI symptoms

- Cromeens and Gambler 2010
- 48 year old male with decade of post-prandial abdominal bloating, cramping, nausea and vomiting, and POTS, spine pain throughout
- By the 3rd treatment patient had reduced GI symptoms
- 4th Treatment decreased pain
- Required maintenance treatment
- Soft tissue, muscle energy, articulatory, ligamentous articular strain, integrated neuromuscular release, articulatory techniques

- Osteopathic Family Physician 2010;2:144-147
Polyneuropathy

OSTEOPATHIC MANIPULATION TECHNIQUES
Osteopathic Manipulation

• Large fiber neuropathy
 – Best to treat the underlying cause
 – However Treatment of CSF, epineural space and perineural space might be helpful
Today’s Lab will focus on Vagus But...

• Autonomic Neuropathy
 – Linea Alba release
 • Release the celiac ganglion and plexus while you are there
 – Correct dysfunction of the respiratory and pelvic diaphragm
 – CV4, might need lots of them
 – Treat ANS and structural abnormalities
 • Treat the occiput/OA, sacrum, coccyx,
 – When the patient is healthy enough integrate the systems
 – Treat the ganglion impars
 » Treating hand on the sacro-coccygeal junction and tip of coccyx
 – Treat midline of the sacrum
 – Release the sympathetic chain there
 • Treating the vagus nerve and its nuclei (next slide)
For Images

• Please reference: Netter
• Blumenfeld: Neuroanatomy through Clinical Cases
Vagus Nerve Anatomy

- Exits Medulla
 - Between olive and inferior cerebellar peduncle
- Jugular foramen
 - Sensory ganglia
 - Superior and inferior
- Joins CN XI below the inferior sensory ganglion
- Descends through the carotid sheath posterolateral to carotid
- Medial to internal jugular vein
Right Vagus

• Crosses anterior to subclavian artery
• Fat behind the innominate vessels
• Enters thorax right of the trachea
• Rises behind the hilum of the right lung
• Courses medially toward esophagus
 – Joins the left vagus to form the esophageal plexus
Left Vagus

- Crosses anterior to the left subclavian artery
- Enters the thorax between the left common carotid and subclavian arteries
- Descends on left side of the aortic arch
- Behind the phrenic nerve
- Behind the root of the left lung
- Medially and downward to esophagus
- Meets right vagus \rightarrow esophageal plexus
Vagus: Gastric Nerves

• Esophageal plexus gives rise to the anterior and posterior gastric nerves
• Supply all abdominal organs and GI tract to the splenic flexure
• Right vagus \rightarrow posterior gastric plexus
 – Posterioinferior
• Left vagus \rightarrow anterior gastric plexus
 – Anterosuperior
Vagus: Celiac Nerve

- Right vagus nerve
- Celiac plexus
Vagus and the Heart

• Esophageal plexus
 – Supplies posterior pericardium
• Invests in the deep cardiac plexus
 – Anterior to carina
 – Inferior cardiac branch
 • Right side from trunk of vagus at the trachea
 • Left from recurrent laryngeal nerve
Cardiac Plexus

• Superficial
 – Under the aortic arch anterior to the right pulmonary artery
 – Left sympathetic trunk and lower superior cervical cardiac branch of the vagus

• Deep
 – Anterior to the carina, posterior to aortic arch
 – Mix of sympathetic from the and parasympathetic from inferior cardiac branch of vagus
Deep Cardiac Plexus

- Right side
 - Anterior and posterior coronary plexus
 - Right atrium

- Left side
 - Superficial cardiac plexus
 - Left atrium
 - Posterior coronary coronary plexus
Okay let’s treat

- Occipitocervical hold or vault – just be comfortable – treat by intention, if you need to treat locally, hands anterior chest wall at the level of the carina (sternal angle) and epigastric area is fine
- DO NOT INVADE; DO NOT RUSH
- Get on the 4th ventricle
- Move anterior and find dorsal motor nerve of the vagus
 - Just lateral to the hypoglossal nucleus – pick one side to treat first then bring in the other
- Bring your attention to the esophageal plexus – bridge to the dorsal motor nucleus of the vagus
- Now bring your attention to the anterior and posterior gastric plexus
- Bridge it to the esophageal plexus then the dorsal motor nucleus
- Now bring your attention to the celiac plexus and do the same as above
- Bring your attention to the superficial and deep cardiac plexus – treat and integrate with the esophageal plexus
- Now see the big picture and put it all together
- Now release the nucleus tractus solitarius then nucleus ambiguus
- THIS IS TOO BIG A TREATMENT FOR A SICK PATIENT
 - Treat the individual components first and over time start linking them together