In this issue:

Proposed Code of Ethics for Treating Osteopathic Manipulation Demonstration Models in Front of Groups................. 7

Frequency of Somatic Dysfunction in Infants With Tongue-Tie: A Retrospective Chart Review 10

An Exploration of Zink’s Common Compensatory Pattern: Comparing Myofascial Restrictions to Segmental Spinal Somatic Dysfunctions: A Retrospective Review 16

The AAOJ’s 2018 Index 23

Complete Table of Contents...............3
The American Academy of Osteopathy is your voice...

in teaching, promoting, and researching the science, art, and philosophy of osteopathic medicine, with the goal of integrating osteopathic principles and osteopathic manipulative treatment in patient care.

If you are not already a member of the American Academy of Osteopathy (AAO), the AAO Membership Committee invites you to join the Academy as a 2018-19 member. The AAO is your professional organization. It fosters the core principles that led you to become a doctor of osteopathic medicine.

For $5.54 a week or just 79 cents a day, you can become a member of the professional specialty organization dedicated to you and osteopathic manipulative medicine (OMM).

Your membership dues provide you with:

• a national advocate for OMM, both within the profession and with health care policy-makers and third-party payers.
• a champion that is monitoring closely and responding rapidly to the standards being developed for the single accreditation system for graduate medical education.
• referrals of patients through the “Find a Physician” tool both on the AAO website and at the FindOMM.org URL, as well as from calls to the AAO office.
• discounts on continuing medical education at the AAO’s annual Convocation and its weekend courses.
• automatic acceptance of AAO-sponsored courses by the American Osteopathic Board of Neuromusculoskeletal Medicine, the only certifying board for manual medicine in the world today.
• networking opportunities with peers.
• discounts on books in the AAO’s online store.

• complimentary subscription to The AAO Journal, published electronically 4 times annually.
• complimentary subscription to the online AAO Member News, published 8 times annually.
• weekly OsteoBlast e-newsletters, featuring research on manual medicine from peer-reviewed journals around the world.
• practice promotion materials, such as the AAO-supported “American Health Front” segment on OMM.
• discounts on advertising in AAO publications and in materials for the AAO’s Convocation.
• the fellow designation of FAAO, which recognizes DOs for promoting OMM through teaching, writing, and professional service and which is the only earned fellowship in the osteopathic medical profession.
• promotion and grant support of research on the efficacy of OMM.
• support for the future of the profession through the Student American Academy of Osteopathy, the National Undergraduate Fellows Association, and the Resident American Academy of Osteopathy.

If you have any questions regarding membership or membership renewal, contact Bev Searcy, the AAO’s finance and membership assistant, at BSearcy@academyofosteopathy.org or at (317) 879-1881, ext. 212.

If you are not already a member of the American Academy of Osteopathy (AAO), the AAO Membership Committee invites you to join the Academy as a 2018-19 member. The AAO is your professional organization. It fosters the core principles that led you to become a doctor of osteopathic medicine.

For $5.54 a week or just 79 cents a day, you can become a member of the professional specialty organization dedicated to you and osteopathic manipulative medicine (OMM).

Your membership dues provide you with:

• a national advocate for OMM, both within the profession and with health care policy-makers and third-party payers.
• a champion that is monitoring closely and responding rapidly to the standards being developed for the single accreditation system for graduate medical education.
• referrals of patients through the “Find a Physician” tool both on the AAO website and at the FindOMM.org URL, as well as from calls to the AAO office.
• discounts on continuing medical education at the AAO’s annual Convocation and its weekend courses.
• automatic acceptance of AAO-sponsored courses by the American Osteopathic Board of Neuromusculoskeletal Medicine, the only certifying board for manual medicine in the world today.
• networking opportunities with peers.
• discounts on books in the AAO’s online store.

• complimentary subscription to The AAO Journal, published electronically 4 times annually.
• complimentary subscription to the online AAO Member News, published 8 times annually.
• weekly OsteoBlast e-newsletters, featuring research on manual medicine from peer-reviewed journals around the world.
• practice promotion materials, such as the AAO-supported “American Health Front” segment on OMM.
• discounts on advertising in AAO publications and in materials for the AAO’s Convocation.
• the fellow designation of FAAO, which recognizes DOs for promoting OMM through teaching, writing, and professional service and which is the only earned fellowship in the osteopathic medical profession.
• promotion and grant support of research on the efficacy of OMM.
• support for the future of the profession through the Student American Academy of Osteopathy, the National Undergraduate Fellows Association, and the Resident American Academy of Osteopathy.

If you have any questions regarding membership or membership renewal, contact Bev Searcy, the AAO’s finance and membership assistant, at BSearcy@academyofosteopathy.org or at (317) 879-1881, ext. 212.

AAOJ Call for Submissions

Time is precious and article writing is often triaged for busy physicians. In an effort to help guide the journal and stimulate interest in academic and scholarly activity, we are providing some broad topics that can be “reserved” for you. These are by no means the only topics for the journal, but it helps to eliminate the writer’s block that so many of us may face.

Below are the topics available to reserve if you would like to support your portfolio with academic writing:

• Osteopathic approaches to treating patients with pelvic dysfunctions
• Osteopathic approaches for the cardiac patient
• The body triune: osteopathic treatment of mind and spirit for today’s patient
• Beyond Spencer technique: OMT for shoulder overuse
• Using OMT to treat patients with long-term side effects of radiation for cancer treatment

If you are interested in any of these topics, send an email to Lauren Good and reserve your topic today. Manuscripts should be emailed to editoraaoj@gmail.com within three months of reserving a topic. See the AAOJ’s Instructions for Contributors for more information on submitting manuscripts.

In addition, we are asking for peer reviewers to assist us in producing the best journals we can, so please contact AAO Communications Specialist Lauren Good at LGood@academyofosteopathy.org if you can help in this capacity. No experience is required, and training resources will be provided. Peer reviewers are expected to review at least two manuscripts per year.

If you have any questions, please email us at editoraaoj@gmail.com.
The AAO Journal
Janice Upton Blumer, DO, FAAO Editor-in-chief
Kevin Albert Thomas, DO, MS Associate editor
Brian P. Peppers, DO, PhD Assistant editor
Raymond J. Hruby, DO, MS, FAAO Scientific editor emeritus
Lauren Good ... Managing editor

AAO Publications Committee
Edward Keim Goering, DO, chair
William J. Garrity, DO, vice chair
Janice Upton Blumer, DO, FAAO
Thomas R. Byrnes Jr., DO
Katherine L. Heineman, DO
Raymond J. Hruby, DO, MS, FAAO
Brian E. Kaufman, DO, FACOI, FACP
Hollis H. King, DO, PhD, FAAO, FCA

Janet M. Krettek, DO, FACOS
Bobby Nourani, DO
Brian P. Peppers, DO, PhD
Hallie J. Robbins, DO, ABPMR
Bonnie J. Sendzicki, DO
Kevin Albert Thomas, DO, MS
Karen T. Snider, DO, FAAO, Board of Trustees liaison
Nicholas Wade Salupo, DO, FAAO liaison
Danielle D. Dukes, OMS III, SAAO liaison

American Academy of Osteopathy
Catherine M. Kimball, DO President
Kendi L. Hensel, DO, PhD, FAAO President-elect
Sherri L. Quarles .. Executive director

The AAO Journal is the official publication of the American Academy of Osteopathy. Issues are published 4 times a year.

The AAO Journal is not responsible for statements made by any contributor. Opinions expressed in The AAO Journal are those of the authors and do not necessarily reflect viewpoints of the editors or official policy of the American Academy of Osteopathy or the institutions with which the authors are affiliated, unless specified.

Although all advertising is expected to conform to ethical medical standards, acceptance does not imply endorsement by this journal or by the American Academy of Osteopathy.

Subscription rate for AAO nonmembers: $60 per year.
To subscribe, contact AAO Communications Specialist Lauren Good at LGood@academyofosteopathy.org.

Send all address changes to BSearch@academyofosteopathy.org.

ISSN 2375-5717 (online) ISSN 2375-5776 (print)

The advertising rates listed below are for The AAO Journal, the official peer-reviewed publication of the American Academy of Osteopathy (AAO). AAO members and AAO component societies are entitled to a 20% discount on advertising in this journal. Call the AAO at (317) 879-1881, ext. 210, for more information.

<table>
<thead>
<tr>
<th>Advertising Size</th>
<th>Rate</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full page (7.5” x 9.5”)</td>
<td>$600</td>
<td></td>
</tr>
<tr>
<td>One-half page (7.5” x 4.5”)</td>
<td>$400</td>
<td></td>
</tr>
<tr>
<td>One-third page (2.25” x 9.5”)</td>
<td>$300</td>
<td></td>
</tr>
<tr>
<td>Quarter page (3.5” x 4.5”)</td>
<td>$200</td>
<td></td>
</tr>
<tr>
<td>Classified</td>
<td>$1 per 7 characters, spaces not included</td>
<td></td>
</tr>
</tbody>
</table>

Advertisements must be pre-paid and must be received by the 20th of the month preceding publication. All advertisements are printed in full-color.
AAOJ Submission Checklist

Manuscript Submission

- Submission emailed to editoraaoj@gmail.com or mailed on a flash drive or CD to the AAOJ managing editor, American Academy of Osteopathy, 3500 DePauw Blvd, Suite 1100, Indianapolis, IN 46268-1136
- Manuscript formatted in Microsoft Word for Windows (.doc, .docx), text document format (.txt), or rich text format (.rtf)

Manuscript Components

- Cover letter addressed to the AAOJ's editor-in-chief with any special requests (eg, rapid review) noted and justified
- Title page, including the authors' full names, financial and other affiliations, and disclosure of financial support related to the original research or other scholarly endeavor described in the manuscript
- “Abstract” (see “Abstract” section in "AAOJ Instructions for Contributors" for additional information)
- “Methods” section
 - the name of the public registry in which the trial is listed, if applicable
 - ethical standards, therapeutic agents or devices, and statistical methods defined
- Four multiple-choice questions for the continuing medical education quiz and brief discussions of the correct answers
- Editorial conventions adhered to
 - terms related to osteopathic medicine used in accordance with the Glossary of Osteopathic Terminology
 - units of measure given with all laboratory values
 - on first mention, all abbreviations other than measurements placed in parentheses after the full names of the terms, as in “American Academy of Osteopathy (AAO)”
- Numbered references, tables, and figures cited sequentially in the text
 - journal articles and other material cited in the “References” section follow the guidelines described in the most current edition of the AMA Manual of Style: A Guide for Authors and Editors
 - references include direct, open-access URLs to posted, full-text versions of the documents, preferably to digital object identifiers (DOIs) or to the original sources
 - photocopies provided for referenced documents not accessible through URLs
- “Acknowledgments” section with a concise, comprehensive list of the contributions made by individuals who do not merit authorship credit, as well as permission from each individual to be named
- For manuscripts based on survey data, a copy of the original validated survey and cover letter

Graphic Elements

- Graphics formatted as specified in the “Graphic Elements” section of “AAOJ Instructions for Contributors”
- Graphics as separate graphic files (eg, jpg, tiff, pdf)
- Each graphic element cited in numerical order (eg, Table 1, Table 2 and Figure 1, Figure 2) with corresponding numerical captions provided in the manuscript
- For reprinted or adapted tables, figures, and illustrations, a full bibliographic citation given, providing appropriate attribution

Required Legal Documentation

- For reprinted or adapted tables, figures, and illustrations, copyright holders’ permission to reprint in the AAOJ’s online and print versions, accompanied by photocopies of the original published graphic designs
- For photographs in which patients are featured, signed and dated patient-model release forms
- For named sources of unpublished data and individuals listed in the “Acknowledgments” section, written permission to publish their names in the AAOJ
- For authors serving in the US military, the armed forces’ written approval of the manuscript, as well as military or other institutional disclaimers

Financial Disclosure and Conflict of Interest

Authors are required to disclose all financial and nonfinancial relationships related to the submission’s subject matter. All disclosures should be included in the manuscript’s title page. See the “Title Page” section of “AAOJ Instructions to Contributors” for examples of relationships and affiliations that must be disclosed. Those authors who have no financial or other relationships to disclose must indicate that on the manuscript’s title page (eg, “Dr Jones has no conflict of interest or financial disclosure relevant to the topic of the submitted manuscript”).

Publication in the JAOA

Please include permission to forward the manuscript to The Journal of the American Osteopathic Association if the AAOJ’s editor-in-chief determines that the manuscript would likely benefit osteopathic medicine more if the JAOA agreed to publish it.

Questions? Contact editoraaoj@gmail.com.
In his autobiography, the founder of osteopathic medicine wrote, “I am simply trying to teach you what you are; to get you to realize your right to health, and when you see the cures wrought here, after all other means have failed, you can but know that the foundation of my work is laid on Nature’s rock.”

What a prophetic man to write such a quote. Ask any DO in practice and you will find that the majority have seen the “end of the road” patient: one who had tried everything previously with no success and shows up on their doorstep. I have been barraged by such patients lately—ones who look at you with hope in their eyes but ready to accept the disappointment they have felt from other providers. Many get better at the waystation of osteopathy, but some do not. How often do I lament “If I had only seen them at the beginning of their journey…”?

Not only does A.T. Still give osteopathic physicians a window into his philosophy with the above quote, he also gives us what is seemingly a premonition about the state of our current health system. He states what he is teaching is to “realize your right to health.” In essence, he is implying if we followed his teachings our entire lives—and embodied them for our patients—health would be the inevitable outcome. Unfortunately, many of these patients have often been “meddled” with, surgically and otherwise. Finding the health in a patient who lost it along the way can be a difficult task for the osteopathic physician.

Health care rights and access seem to be a foundation of many recent political platforms. With the most recent election, how many candidates built the foundation for support on the establishment of adequate health care both regionally and nationally? Instead of focusing on patient outcomes, many platforms are focused on delivery systems and access to health care. The trends in hospital systems, however, are focusing on outcomes and patient satisfaction with care.

To that end, A.T. Still seemed to understand that the needs of the patient were at the center of health care, not the needs of the physician, hospital system, or insurance company. Perhaps if we focus on the needs of the patient, as A.T. Still discusses in the quote above, we would realize the right to health he so tenaciously fought for. Osteopathic medicine, with its distinctive philosophy and hands on health care, is perfectly positioned for the physician of the future, outcomes-focused and patient satisfaction worthy.

Regardless if the patient improves when they land in your office as mine had, having seen 5 other physicians, physical therapy and adjunctive therapy, and an armful of medications, they leave feeling they have been heard, attended to, and generally satisfied due to the unique approach of the osteopathic physician.

Perhaps the rights of the patient in A.T. Still’s patient-centric vision of the future of health care can guide and formulate the physician of the future. Perhaps, working on the side of the patient, aligned with their anatomy and health, rather than in opposition to it, our vision for the future can be a healthy one and we can realize what we truly are meant to be as both a physician and for our patients.

In gratitude,

Janice Blumer, DO, FAAO

Reference
AAO Calendar of Events

Mark your calendar for these upcoming Academy meetings and educational courses.

2018–19

Dec. 1 FAAO applications due

Dec. 7-9 “A Visceral Approach to the Arteries of the Abdomen and Pelvis”—Kenneth J. Lossing, DO, course director—UNTHSC/Texas College of Osteopathic Medicine in Fort Worth

Dec. 12 Committee on Fellowship in the AAO’s teleconference—8 p.m. Eastern

Dec. 24-25 Christmas holiday—AAO office closed

Dec. 31-Jan. 1 New Year’s holiday—AAO office closed

Jan. 16 Committee on Fellowship in the AAO’s teleconference—8 p.m. Eastern

Jan. 21 Martin Luther King Jr. Day—AAO office closed

Feb. 1-2 AAO Education Committee’s meeting—AAO office in Indianapolis

Feb. 18 Presidents Day—AAO office closed

March 10-12 Pre-Convocation course—“Fascial Distortion Model—Beyond the Basics: Osteopathy and FDM moving forward together!”—Todd A. Capistrant, DO, MHA, course director—Rosen Shingle Creek in Orlando, Florida

March 12 Committee on Fellowship in the AAO’s meeting—Rosen Shingle Creek in Orlando, Florida

March 13 AAO Board of Governors’ meeting—Rosen Shingle Creek in Orlando, Florida

March 13-17 Convocation—“Leading, Expanding and Cutting: The Edges of Osteopathic Medicine”—Rebecca E. Giusti, DO, program chair—Rosen Shingle Creek in Orlando, Florida

March 14 AAO annual business meeting and luncheon—11:45 a.m. to 2:15 p.m. Eastern—Rosen Shingle Creek in Orlando, Florida

March 17 Post-Convocation—Residency Program Directors’ Workshop—Darren L. Grunwaldt, DO, course director—Rosen Shingle Creek in Orlando, Florida

NMM PLUS 1 RESIDENCY PROGRAM IN SOUTHAMPTON, NY

NMM Plus 1 Residency at Southampton Hospital in beautiful Southampton, Long Island. Applications are currently being accepted. If interested, please contact Program Director Lawrence Barnard, DO, lbarnard@southamptonhospital.org; Program Coordinator for NMM+1 program Stefania Salzman (631) 726-0409, ext. 126; or Education Department Secretary Karen Roberts at (631) 726-0409.

NMM/OMM +1 POSITIONS AVAILABLE IN CORVALLIS, OR

Good Samaritan Regional Medical Center, an active hospital, labor, pediatric and outpatient service, has NMM/OMM +1 residency positions open for the 2018-19 academic year. Continuity clinics with Oregon State University athletes as well as a weekly free pediatric clinic. Applicants must have finished any type of AOA-approved residency by June 2018. Contact Elizabeth Caron, DO, at ecaron@samhealth.org, or call the Graduate Medical Education Department at (541) 768-4906.
Proposed Code of Ethics for Treating Osteopathic Manipulation Demonstration Models in Front of Groups

Leslie Mae-Geen Ching, DO

Introduction
Generally, the purpose of osteopathic manipulative medicine (OMM) demonstrations is to show a screening or treatment approach or technique with a demonstration model, who is usually a volunteer. By showing this in front of a group of learners, this maximizes the learning experience. It is also helpful for the demonstration model since many kinesthetic learners learn best by tactile experience. It is important to keep medical ethics in mind for all professional interactions, including for physician instructors who are treating demonstration models, especially medical students, with OMM in group settings. Medical students are considered a vulnerable population in the language of medical research. In a group setting, they may feel coerced to be a treatment model, and student-teacher relationships may be affected as a result.

The American Osteopathic Association (AOA) Code of Ethics outlines an ethical approach for osteopathic medical students, residents, and physicians in clinical and educational settings. It incorporates aspects of the 4 principles of medical ethics: respect for autonomy, beneficence, non-maleficence, and justice. Demonstration models do not fall under a patient-physician legal relationship. However, because these models are volunteering the use of their bodies in a professional setting, it is advisable to keep the Code of Ethics and principles in mind.

This paper will explore the 4 principles and the relevant sections in the AOA Code of Ethics and briefly address other resources in regards to treating demonstration models with OMM in group settings. This paper will also address generational differences in millennials and how these might affect participation in or perception of OMM demonstrations. A literature search revealed no articles written on a principled approach to OMM demonstrations so this will hopefully elicit interest and conversation on how best to approach this topic.

The 4 Principles of Medical Ethics

Autonomy
Autonomy describes the importance of the physician respecting the right of the competent patient to make decisions for his or her medical care. For treating demonstration models in front of groups, it is imperative to keep this principle in mind. The demonstration model should be given an explanation of the procedure. The procedure, risks, benefits, and side effects should be discussed especially before doing potentially traumatic techniques, such as high-velocity, low-amplitude or a somatoemotional release. If the demonstration is not meant to show a comprehensive diagnosis and treatment, this should be explained to the model and the group. The demonstration model should be made aware that he or she does not need to agree to be treated and that this right of the model is respected. This also helps to model positive physician communication skills and ethics for the observers and explains to them what they might be witnessing.

Beneficence and non-maleficence
Beneficence and non-maleficence describe 2 sides of the same concept. Beneficence means to cause a net benefit for the patient; non-maleficence is another way to say “do no harm.” The model should be treated in such a way that offers respect, autonomy, and maybe the benefit of a technique that can help his or her function or well-being. Non-maleficence in this context not only means physical harm but also emotional harm. For example, discussing whether...
(continued from page 7)

the model has experienced physical or emotional abuse in the past in a group setting without his or her consent can result in anxiety, embarrassment, and anger.

Justice

Gillon describes justice in terms of distributive justice, rights-based justice, and legal justice. On different levels, these ideas may include personal, organizational, professional, and societal justice.

Relevant Sections of the AOA Code of Ethics

The AOA’s Code of Ethics is a document that describes medical ethics for the osteopathic physician, resident, or medical student. It can and should be applied to public demonstration as much as to private treatments. The sections on privacy, abandonment and sexual harassment are especially applicable.

Section 1. The physician shall keep in confidence whatever she/he may learn about a patient in the discharge of professional duties. Information shall be divulged by the physician when required by law or when authorized by the patient.

The demonstration model is entitled to privacy. Indicate that he or she might be asked invasive questions and that the model should not feel coerced to go into detail in front of the group. The physician instructor should avoid eliciting sensitive information if the model seems uncomfortable. Remember that medical students are trained to be compliant to attending physicians. Their autonomy needs to be respected.

Section 4. A physician is never justified in abandoning a patient. The physician shall give due notice to a patient or to those responsible for the patient’s care when she/he withdraws from the case so that another physician may be engaged.

If a treatment reaction or somatoemotional release does occur, make sure that the demonstration model feels supported physically and emotionally. Observers may feel distressed by this reaction, so explain the process to them. Above all, do not abandon the demonstration model. Make sure to check on them periodically. If necessary, have appropriate follow-up care arranged.

Section 16. Sexual harassment by a physician is considered unethical. Sexual harassment is defined as physical or verbal intimidation of a sexual nature involving a colleague or subordinate in the workplace or academic setting, when such conduct creates an unreasonable, intimidating, hostile or offensive workplace or academic setting.

Sometimes techniques in potentially sensitive body areas may be appropriate for didactic purposes or for treatment of a demonstration model. Physician instructors demonstrating such techniques on models should use appropriate language and clearly explain to the models and observers what they are doing. Sexual innuendo and joking language are inappropriate and should not be used. As discussed previously, consent should be obtained and autonomy should be respected.

Other Educational Ethics

The American Association of Colleges of Osteopathic Medicine formed a Task Force on Ethics and Professionalism in early 2018. At the time of this writing, they have met twice and recommendations are forthcoming.

The Association of American Educators has written a Code of Ethics for Educators that is also relevant to physician instructors. They structure the code around 4 principles: ethical conduct towards students, practices and performance, professional colleagues, and parents and community. Some noteworthy points of intersection are the affirmation to not reveal confidential information, “to protect the student from conditions detrimental to learning, health, or safety,” and to not purposefully encourage the teasing of students.

Generational Differences

Today’s medical students are generally millennials (those born between the 1980s and mid-2000s) and have different approaches to classroom learning. They are sensitive to power imbalances and to appearing vulnerable in front of their peers, which can lead to decreased classroom participation. A qualitative analysis by Roehling et al examined barriers to college undergraduate classroom participation and highlighted several concepts that are applicable to OMM demonstrations. One concept was to “work to develop a comfortable classroom atmosphere at the very beginning of the semester while norms for participation are being established.”

In the setting of a demonstration at a workshop, these norms for participation could be established with the group at the beginning of the workshop, which can include clarifying that the demonstration model can withdraw consent for treatment at any time without any adverse judgments. As an example of a situation where these norms were not explicitly discussed beforehand, part of a recent demonstration at a school included drawing landmarks on the demonstration model’s abdomen so that students could visualize their locations. The model’s approval for this had been previously obtained but the observing students were not aware of this. When the physician instructor started drawing landmarks, it elicited several audible gasps and the incident was remarked about on course evaluations. Indicating that the model’s approval had

(continued on page 9)
been obtained for this would have obviated much of the observers’ concern.

Another concept proposed by Roehling et al was “do not let a student feel isolated or unsupported in a discussion” or, in this setting, a demonstration. If the demonstration model appears to be uncomfortable or having a side effect from the treatment, the observing students are going to be aware of this and also to any perceived lack of concern on the part of the physician instructor. This can adversely affect both the perception of the demonstration as well as the perception of the physician’s ethics. Another approach that could be helpful is to ask the demonstration model if they are uncomfortable or having pain and to encourage them to give feedback about their experience to the group.

Conclusions
Treating demonstration models in front of an audience is a valuable didactic tool for OMM. Although there is no legal patient-physician relationship, physician instructors should keep ethical guidelines in mind for the benefit of modeling good physician behavior and communication, as well as to respect the patient models’ integrity.

Observers who are in the millennial generation are very conscious of perceived power imbalances and unfairness. Making sure that both the models and the observers are clear about the goals and objectives for the demonstrations can help to clarify unclear or potentially uncomfortable situations.

If demonstrating treatment, a physician instructor could consider these questions for guidance: Is this technique necessary or appropriate now for this patient and in this setting? Is there an established protocol for appropriate follow-up care if the model needs further management after this technique or treatment?

There are several directions to take this in the future. A survey of OMM departments’ policies could be instructive. A possible study would be an inquiry into how comfortable the demonstration models feel during the assessment and treatment, how supported they feel in refusing to do certain treatments or to answer certain questions, and if they feel that they have appropriate follow-up. The AACOM task force includes an Educational Council on Osteopathic Principles representative, so its recommendations could be helpful in drawing up a Code of Ethics specific for OMM departments if none already exist. The American Academy of Osteopathy could also include a section in their presenter agreements on ethical OMM demonstrations at courses and at conferences.

Acknowledgements
The author would like to gratefully acknowledge the discussion and contributions of Harriet Shaw, DO, emeritus clinical professor at the Oklahoma State University College of Osteopathic Medicine (OSU-COM), and Amelia McConaghy, DO, clinical assistant professor at OSU-COM.

References

Stay Connected—
Follow AAO online!
Abstract

Introduction
The recent increase in breastfeeding has brought an increased awareness of potential causes for breastfeeding difficulties. Many parents are choosing frenectomy or laser revision for their infants with tongue-tie (ankyloglossia). This study aims to identify somatic dysfunctions commonly found in infants with tongue-tie as a first step in distinguishing infants with feeding issues caused by somatic dysfunction from infants with feeding issues directly related to tongue-tie. Since somatic dysfunction of the cranial base and occiput have direct implications for impacting the hypoglossal nerve, which provides motor control of intrinsic tongue musculature, it is our hypothesis that infants with tongue-tie and feeding issues will have a high incidence of cranial base dysfunction.

Methods
A retrospective chart review was performed on 48 charts of infants diagnosed with tongue-tie who had been seen from June 2012 to January 2017 at a multispecialty practice. Thirty-one charts were excluded and 17 charts are reviewed here.

Results
Of the 17 infants with tongue-tie whose charts were included in the review, 76.4% had difficulties with latching and 35.3% had difficulty with suck or coordination of suck. All of the infants (100%) had occipital condylar dysfunction, 94.1% had restriction of at least 1 cranial suture, 94.1% had atlantoaxial (OA) joint dysfunction, and 23.5% had dysfunction at the sphenobasilar synchondrosis.

Conclusions
All of the infants with tongue-tie had somatic dysfunction at the cranial base. This again raises the question of whether or not the feeding issues were directly related to the tongue-tie or to the somatic dysfunction or to a combination of both. This study was limited by sample size and limited diversity of patient sampling. Further studies are necessary.

IRB #2017-007

Introduction
Tongue-tie (ankyloglossia) is defined as a restricted, thickened, or shortened lingual frenulum (see Figure 1). It is typically an isolated defect but can be associated with other facial defects. It can restrict the tongue’s ability to elevate and extend, both of which are necessary for the infant to express milk while breastfeeding. It is more common in males1 and occurs in 0.2% to 4.8% of infants.1,2 A recent rise in women choosing to breastfeed (see Table 1), has led to an increased awareness of tongue-tie in the general population and its potential for affecting breastfeeding. This increased awareness has more parents questioning if their infant has a tongue-tie and if so, how is it impacting breastfeeding, what is the best course of treatment, and is a frenectomy or laser tongue-tie revision (see Figure 2) necessary.

Based on prior evidence that frenectomy did not significantly impact feeding or speech outcomes for most infants, a majority of pediatricians traditionally recommend not doing a frenectomy unless the tongue-tie interferes significantly with breastfeeding.5 In fact, the Nelson Textbook of Pediatrics states that “A short lingual
frenulum may be worrisome to parents but only rarely interferes with eating or speech, generally requiring no treatment. A study done in 2000 showed that only 10% of pediatricians and 30% of otolaryngologists who responded to a survey felt that tongue-tie frequently affected feeding, while lactation consultants and speech therapists were more likely to feel that it affected feeding. However, recent research has again raised the possibility of tongue-tie as a key to painful breastfeeding and/or poor latch. Additionally, a few small studies demonstrated some potential benefit in feeding and nipple pain after frenectomy. These studies have generated an increased interest from parents and some health care providers in frenectomy as a means of helping infants with difficulties in breastfeeding. Unfortunately, most of these studies have low to insufficient strength of evidence. Therefore, further high-quality research is necessary to establish a severity scale, correlate tongue-tie with symptoms, and provide evidence-based recommendations as to which infants would benefit from frenectomy and at what age.

Unfortunately, not all infants experience an objective improvement in breastfeeding after frenectomy. Studies cite the incidence of continued breastfeeding difficulties after frenectomy anywhere from 8% to 28.8%. These infants return to their health care team for further evaluation and treatment. Because infants with a diagnosis of tongue-tie typically have no difficulty with bottle feeding and many practitioners have nothing else to offer, the bottle often becomes the treatment plan regardless of the underlying etiology.

The lack of improvement in breastfeeding after frenectomy raises the question of what factors other than the tongue-tie may be negatively influencing those infants’ ability to breastfeed and whether or not the tongue-tie ever had a substantial negative impact on their breastfeeding.

Infant feeding difficulties have also been shown to improve by treating somatic dysfunction. Somatic dysfunction of the cranial base and occiput have direct implications for impacting the hypoglossal nerve which provides motor control of intrinsic tongue musculature. Additionally, somatic dysfunction of this area would be expected to affect the glossopharyngeal, vagus and spinal accessory nerves as they exit the jugular foramen, further impacting tongue motion, gag reflex, and swallow.

Normal function of the intrinsic muscles of the tongue is essential for effectiveness of the oral and pharyngeal phases of suck and swallow. Without appropriate function, it becomes more difficult for infants to coordinate tongue motion, extract milk from the breast, and coordinate their swallow. These symptoms are also seen in infants diagnosed with tongue-tie.

This leads us to question if some infant breastfeeding difficulties are related to their tongue-tie, a somatic dysfunction, or combination of both. This study aims to identify the frequency of somatic dysfunction in infants with a diagnosis of tongue-tie. We propose that infants diagnosed with tongue-tie should first undergo a thorough feeding evaluation, including evaluation for somatic dysfunction, as a first step in distinguishing infants with feeding issues caused by.
somatic dysfunction from those infants with feeding issues directly related to tongue-tie. Further, it is our hypothesis that infants with tongue-tie and breastfeeding issues will have a high incidence of cranial base dysfunction.

Methods
Institutional Review Board approval was obtained from the Edward Via Virginia College of Osteopathic Medicine. (IRB approval #2017-007) Following approval, the electronic medical record system (EMR) at an outpatient, multispecialty, academic clinic in Blacksburg, Virginia, was searched for all infants with a diagnosis of tongue-tie (ICD-9 750.0 or ICD-10 Q38.1). Records from the date of installation of the EMR in June 2012 thru January 2017 were searched. Forty-eight charts were identified with a diagnosis of tongue-tie. However, 3 charts were children diagnosed with tongue-tie for the first time over the age of 12 months, and 7 charts were children who came to the practice at an older age without the necessary information for chart review. Therefore, 38 infants with tongue-tie diagnosed under the age of 12 months were identified. Unfortunately, of those 38 infants, only 17 had been assessed for somatic dysfunction (Figure 3). All of the infants’ osteopathic exams had been done by the same attending osteopathic physician as part of their physical exam. The infants not assessed for somatic dysfunction had been seen by a mixture of other attending physicians and residents in the practice. The 17 included charts were then reviewed for demographic information, type of delivery, method of feeding, presenting symptom, and somatic dysfunction.

Results
Of the 17 charts reviewed, 14 of the infants were born at term gestation, and 3 were born late pre-term. Thirteen infants were male and 4 were female. Fourteen infants were white, while 2 were Asian, and 1 was Hispanic. Eleven of the infants were delivered vaginally, 2 were born by vacuum-assisted vaginal deliveries, and 4 were born by cesarean deliveries. All 17 of the infants were being breastfed, but 2 (a set of twins) were being supplemented with formula in addition to breastfeeding. Three of the infants were diagnosed with posterior tongue-tie and lip tie while the other 14 had been diagnosed with an anterior tongue-tie alone.

Of the 17 charts reviewed, a majority of patients (76.4%) had difficulty with latch. Other common complaints included difficulty with suck and/or coordination of their suck and frequent biting while feeding. Less frequent symptoms included gastroesophageal reflux, fussiness, and poor weight gain (Table 2).

Evaluation for somatic dysfunction revealed that all infants had a cranial somatic dysfunction at the occipital condyles. A majority (94.1%) had atlantooccipital joint (OA) dysfunction and restriction noted along a suture line(s). The sutures most commonly affected were occipitomastoid and lambdoid. A significant amount of infants also had cervical (76.5%) and thoracic (64.7%) somatic dysfunctions. Almost half of the infants (47%) also had sacral and abdominal somatic dysfunction (Table 3).

Discussion
All of the infants’ charts reviewed in this study had somatic dysfunction at the occipital condyles. Remembering that at birth the occiput is still in 4 parts (squamous, basilar, and 2 condylar), it is thought that an intraosseous strain of the condylar parts can directly affect the hypoglossal, while an interosseous strain between the temporal and occipital bones can directly affect the glossopharyngeal, vagus, and spinal accessory nerves as they respectively course through the hypoglossal and jugular foramina that border the condyles. With these nerves providing innervation to muscles of the palate and both the intrinsic and extrinsic muscles of the tongue, it is possible that somatic dysfunction of the occipital condyles could have been a significant contributing factor in poor tongue motion and coordination, as well as issues with swallowing.

Table 2. Patient symptoms (N=17).

<table>
<thead>
<tr>
<th>Symptom</th>
<th>No.</th>
<th>Percent (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Difficulty with latch</td>
<td>13</td>
<td>76.4</td>
</tr>
<tr>
<td>Difficulty with suck/coordination</td>
<td>6</td>
<td>35.3</td>
</tr>
<tr>
<td>Frequent biting while feeding</td>
<td>4</td>
<td>23.5</td>
</tr>
<tr>
<td>Poor weight gain</td>
<td>1</td>
<td>5.9</td>
</tr>
<tr>
<td>Gastroesophageal reflux</td>
<td>3</td>
<td>17.6</td>
</tr>
<tr>
<td>Fussiness</td>
<td>2</td>
<td>11.8</td>
</tr>
</tbody>
</table>

Figure 3. Flow diagram for chart exclusion.

19

20
and therefore could have played a significant role in the breastfeeding difficulties of these infants.

We have shown that infants with tongue-tie have somatic dysfunction that could cause breastfeeding issues. We also know that treating somatic dysfunction in infants has been shown to improve breastfeeding difficulties and that some studies have shown that as many as 50% of infants with tongue-tie are asymptomatic. It is therefore possible that there are symptomatic infants with tongue-tie in whom somatic dysfunction is either a major contributor or the primary cause of their feeding difficulties and in whom frenectomy alone would not be therapeutic. Therefore, our recommendation is that all infants with tongue-tie and feeding difficulties have a complete feeding evaluation, somatic dysfunction screening, and if indicated, osteopathic manipulative treatment (OMT) prior to frenectomy.

This study was limited by the small sample size and limited patient diversity. Additionally, due to its retrospective nature, we were unable to compare somatic dysfunction found in symptomatic infants with tongue-tie to somatic dysfunction found in asymptomatic infants with tongue-tie. Further research is needed to distinguish which infants with tongue-tie would benefit from OMT alone versus treatment with OMT and a frenectomy. A blinded prospective multicenter trial with increased sample size is needed to confirm these findings and evaluate the effect of OMT alone versus OMT and frenectomy, on the quality and duration of breastfeeding.

Conclusion

Infants with tongue-tie have a high incidence of somatic dysfunction in areas which could affect feeding. We recommend that all infants with tongue-tie be screened osteopathically and treated with OMT if indicated. Further research is needed.

Acknowledgements

The authors would like to thank Kimberly J. Wolf, DO, assistant professor at the Touro University College of Osteopathic Medicine in Vallejo, California, for her thoughtful editing.

References

(continued from page 13)

Additional Resources

CONTINUING MEDICAL EDUCATION QUIZ

The purpose of the continuing medical education quiz is to provide a convenient means of self-assessing your comprehension of the scientific content in the article “Frequency of Somatic Dysfunction in Infants With Tongue-Tie: A Retrospective Chart Review” by A. Hope Tobey, DO, FAAP, FACP, and Albert J. Kozar, DO, FAOASM, R-MSK.

To apply for 0.5 credits of AOA Category 2-B continuing medical education, fill out the form on page 15 and submit it to the American Academy of Osteopathy. The AAO will note that you submitted the form and forward your results to the American Osteopathic Association’s Division of Continuing Medical Education for documentation.

Be sure to answer each question in the quiz. You must score a 75% or higher on the quiz to receive CME credit. The correct answers will be published in the next issue of the *AAOJ*.

CME Certification of Home Study

This is to certify that I, ____________________________,
(type or print name)
read the following article for AOA CME credit.

Name of article: “Frequency of Somatic Dysfunction in Infants With Tongue-Tie: A Retrospective Chart Review”

Authors: A. Hope Tobey, DO, FAAP, FACOP, and Albert J. Kozar, DO, FAOASM, R-MSK

Publication: The AAO Journal, Vol. 28, No. 4, December 2018, pages 10-14

AOA Category 2-B credit may be granted for this article.

00____________
(AOA number)

Full name: _________________________________
(type or print name)

Street address: _______________________________

City: _______________________________

State and ZIP code: ___________________________

Signature: _________________________________

Complete the quiz to the right by circling the correct answers. Send your completed answer sheet to the American Academy of Osteopathy. The AAO will forward your results to the American Osteopathic Association. You must answer 75% of the quiz questions correctly to receive CME credit.

Below are the answers to The AAO Journal’s September 2018 quiz on the article titled “Prescribing Herbal Medicines to Complement Osteopathic Manipulative Treatment for Chronic Pain and Dysfunction” by David R. Beatty, DO.

1. a. Taking turmeric orally has been found to be helpful in reducing inflammation.
2. c. The piriformis point is a helpful counterstrain point for the relief of sciatica.
3. b. Black cohosh is felt to improve osteoarthritis.
4. c. When used for upper extremity edema, upper extremity petrissage can be used to treat lymphedema.
An Exploration of Zink’s Common Compensatory Pattern: Comparing Myofascial Restrictions to Segmental Spinal Somatic Dysfunctions: A Retrospective Study

Jesus Sanchez Jr., DO; Justin Brohard, DO; and Richard Thai, DO

Abstract

Background
Zink’s Common Compensatory Pattern (CCP) is a pattern of somatic dysfunction that can be observed in the spinal transitional zones. The CCP can be described as left/right/left/right rotation in the regions of C0/C1/C2, C7/T1, T12/L1, and L5/S1, respectively. It has been proposed that Zink’s pattern can be identified by both myofascial and segmental assessments. This retrospective study investigates myofascial restrictions and spinal somatic dysfunctions to determine whether an agreement exists between myofascial rotation restrictions and osteopathic structural exam findings.

Methods
Osteopathic manipulative medicine (OMM) screening exams were completed for incoming first-year osteopathic medical students at the Western University of Health Sciences College of Osteopathic Medicine of the Pacific in August 2012. In this retrospective study, there were 208 participants, of which 15 had documented significant previous medical history. For the structural exam, rotational restrictions were assessed at OA, C7, T12, and L5. Myofascial restrictions were assessed at the craniocervical, cervicothoracic, thoracolumbar, and lumbosacral transitional zones.

This method of assessment creates 8 separate variables. These variables were recorded using a simple binomial system with 3 options: R for right rotation, L for left rotation, and O for lack of rotational restriction. The authors then evaluated these variables using kappa statistical analysis and the Fisher’s exact test to determine if there was any statistically or clinically significant correlation present between the structural findings and the myofascial restrictions.

Results
Of the 208 participants, 14 individuals (6.731%) matched all 4 of the structural exam restrictions with the myofascial restrictions, 24 (11.538%) matched 3 of the 4 transition zones, 62 (29.808%) matched 2 zones, 73 (35.096%) matched 1, and 35 (16.827%) exhibited 0 matches.

Of the 15 individuals with documented significant previous medical history, 2 individuals (13.333%) had all 4 matches, 1 (6.667%) had 3 matches, 6 (40%) had 2 matches, and 6 (40%) had 1 match.

Of the 198 individuals without significant limitations, 12 individuals (6.218%) had all 4 matches, 23 (11.917%) had 3 matches, 56 (29.016%) had 2 matches, 67 (34.715%) had 1 match, and 35 (18.135%) lacked any agreement between structural and myofascial findings.

On initial kappa analysis with all 208 participants, the authors found a total of 325 matches within the data, yielding a kappa value of 0.0527 with a 95% confidence interval of 0.0025 to 0.1028. For the 15 participants with medical limitations, the authors found the kappa value to be 0.2450 with a 95% confidence interval of 0.0025 to 0.1028.
interval of 0.0615 to 0.4284 ($P=0.0063$). For the 198 individuals without limitations, the authors found the kappa value to be 0.0373 with a 95% confidence interval of -0.0147 to 0.0893 ($P=0.1488$).

Conclusion

Regarding the group of 208 participants, there is a weak, but statistically significant correlation between all data points. For the 15 individuals with significant medical limitations, there is a statistically significant correlation between structural and myofascial exam findings, excluding the lumbosacral transition zone. For the remaining 198 individuals, there is no statistically significant correlation between structural and myofascial findings.

Ambiguity of significant medical limitations and lack of interrater reliability should be addressed in future research. With the limitations of this retrospective pilot study, the authors hope to further investigate the correlation between myofascial restrictions and structural exam findings.

Introduction

Although Zink's Common Compensatory Pattern (CCP) is not a thoroughly investigated topic, current literature from the Osteopathic Survey of Somatic Dysfunction and Zink Compensatory Patterns in Solalá, Guatemala, suggests that Zink's CCP of L/R/L/R was observed in 29% of their participants.1 Furthermore, a right rotation pattern of the cervicothoracic transitional zone was observed in 69% of participants. Within the 69%, 46% also had a compensated left rotation of their craniocervical and thoracolumbar zones.

While this research suggests that there is an increased prevalence of Zink's CCP within a population, the sample size was only 40 participants. This research, along with others, indicates that there may be an increased prevalence of this compensatory pattern, but so far, all research has involved only myofascial restrictions, with no data on segmental spinal rotation as evaluated in a typical osteopathic clinical screening exam.

The purpose of this retrospective study is to investigate the myofascial restrictions and the segmental spinal somatic dysfunctions to determine if there is a correlation between myofascial rotational restrictions and osteopathic structural exam findings. The authors hope that the study will provide more detailed information that will increase understanding of the compensatory patterns that may exist and increase understanding of how to apply this information in the clinical setting.

At the Western University of Health Sciences College of Osteopathic Medicine of the Pacific (WesternU/COMP) in Pomona, California, osteopathic medical students learn about Zink's CCP in the second year of their osteopathic philosophy and principles curriculum. The authors hope that this research will improve the educational experience of students by providing a stronger understanding of Zink's CCP and how it can be applied to the osteopathic clinical practice.

Background

One of the primary tenets of osteopathic medicine is that structure and function are interrelated within the body and that an issue with structure can compromise function. Because of this tenet, osteopathic physicians base much of their clinical philosophy on identifying dysfunction in the structure of the body in hopes of allowing the function to return to a normal state of health and homeostasis.

J. Gordon Zink, DO, FAAO, wrote about this relationship of the structure of the three diaphragms in the body and how they relate to overall function and homeostasis.2

Rather than looking at individual structural components, it has been proposed that one can group the human body into a series of structural and functional patterns. These patterns would make it possible to identify common patterns within a population as well as to tailor clinical approaches based on identified patterns.

One of these patterns commonly identified in patients is Zink's CCP.4 Over many years of clinical practice, Zink discovered this pattern of somatic dysfunction in his patients and found that certain combinations exist more frequently among his patient population.

These patterns of somatic dysfunction typically involve the spinal transitional zones, which include: C0/C1/C2, C7/T1, T12/L1, and L5/S1. When there is somatic dysfunction present within 1 transitional zone, the adjacent transitional zones tend to compensate for this dysfunction. Once this compensation has occurred, a pattern often arises, involving somatic dysfunction at each of the transitional zones.

In the CCP as outlined by Zink, C0/C1/C2 is rotated to the left, C7/T1 is rotated to the right, T12/L1 is rotated to the left, and L5 is rotated to the right on the sacrum, which in turn induces a left-on-left forward torsion of the sacrum. In other words, a given patient would be expected to have a pattern of L/R/L/R in the spinal transition zones.4-6

(continued from page 16)
It has been proposed that this pattern can be identified through both myofascial and segmental assessments, but little information exists on the correlation between these findings. Zink also noted that patients with this CCP were not significantly limited in their daily function, and therefore this pattern may be one of health.\(^3\)

TePoorten has since expanded upon Zink’s concept by using a 10-step protocol of musculoskeletal manipulations to treat the 4 diaphragms of the body in order to promote a pattern of health.\(^7\) If this concept is supported by research, then it can have significant implications for treatment protocols and patient care. Being able to apply these compensatory patterns in clinical practice may help osteopathic clinicians in their diagnostic assessment of patients and in their ability to effectively treat toward health.

Materials and Methods

All data used for this retrospective study were collected in August 2012 by second-year osteopathic medical students during initial osteopathic screening exams for incoming first-year osteopathic medical students at WesternU/COMP. The study was approved by Western University’s institutional review board (Protocol #13/IRB/112).

These screening exams are conducted routinely for the incoming osteopathic medical students each year. The authors of this manuscript were not involved in the data collection process, and all identifying information was removed from the data before they were provided for use in this retrospective study.

There were 208 total participants, of which 15 had significant documented medical histories involving various pathologies. Because of the retrospective nature of this study, the authors did not have access to the criteria involved in determining which participants had significant medical history or other inclusion and exclusion criteria.

The data included segmental diagnoses for the atlantooccipital (OA), C7, T12, and L5 spinal levels in the standard recording method (F/E/N SL/SR RL/RR) as outlined in *Foundations of Osteopathic Medicine*.\(^5\) Data also included gross rotational myofascial restrictions at the spinal transition zones as outlined by Zink and TePoorten.\(^2,6\)

To evaluate for Zink’s myofascial restrictions, the spinal transition zones were evaluated for gross rotational restrictions using the following assessment methods as described by Zink\(^3\) and TePoorten\(^7\):

- **Craniocervical transition zone:** Gentle rotation of the head was induced using the base of the occiput while the patient was supine.
- **Cervicothoracic transition zone:** Gentle rotation of the shoulder girdle was induced using the clavicle-scapula complex by placing one hand on each shoulder with the patient supine.
- **Thoracolumbar transition zone:** Gentle rotation of the lower rib cage was induced using ribs 10-12 with the patient supine.
- **Lumbosacral transition zone:** Gentle rotation of the pelvic girdle was induced using the innominates by contacting the anterior superior iliac spines and iliac crests with the patient supine.

The methods used to record these data allowed the authors to use an organization scheme that resulted in 8 separate variables: OA rotation, C7 rotation, T12 rotation, L5 rotation, craniocervical–myofascial rotation, cervicothoracic–myofascial rotation, thoracolumbar–myofascial rotation, and lumbosacral–myofascial rotation. These variables were recorded using a simple binomial system with

(continued from page 17)

\[(continued\;on\;page\;19)\]
Interpretation of kappa is typically as follows: 0=poor, 0.20=slight, 0.40=fair, 0.60=moderate, 0.80=substantial, 1.0=perfect agreement (Figure).

A Fisher’s exact test also was used for statistical analysis. This test is very similar to a chi-squared test in that it compares values between 2 groups to determine statistical correlation, but it is better suited to evaluate small sample sizes due to added statistical constraints. The results of this test are represented by a P-value, which is considered statistically significant when less than 0.05.

Results

Upon initial evaluation of the raw data, the authors were able to identify the number of matches that existed between the 2 sets of data. These matches indicate a possible agreement between the structural findings and the myofascial findings.

Because the data points were collected at the 4 transition zones in the spine, this provided 4 separate variables to evaluate for matches. After all 208 data sets had been evaluated, it was found that there were 14 individuals (6.731%) whose structural findings perfectly matched the myofascial findings, of which only 1 individual held the L/R/L/R common compensatory pattern.

There were 24 individuals (11.538%) who exhibited a match in 3 of the 4 transition zones, 62 individuals (29.808%) with 2 matches, 73 individuals (35.096%) with 1 match, and 35 individuals (16.827%) who did not exhibit any matches between their structural findings and their myofascial findings.

The data were further split into 2 subgroups: those without significant medical history or limitations and those with limitations. Of the 15 individuals with significant limitations, 2 individuals (13.333%) had matches at all 4 transition zones, 1 individual (6.667%) had 3 matches, 6 individuals (40%) had 2 matches, and 6 individuals (40%) had 1 match.

Of the 198 individuals without significant limitations, 12 individuals (6.218%) had 4 matches, 23 individuals (11.917%) had 3 matches, 56 individuals (29.016%) had 2 matches, 67 individuals (34.715%) had 1 match, and 35 individuals (18.135%) lacked any agreement between structural and myofascial findings.

Kappa analysis was used to determine whether this agreement between findings is statistically significant or due purely to chance. Taking all variables into account separately, there are 832 total possible matches, and because a trinomial variable system was used, it was expected that there would be 275 matches (33.33%) simply by chance. On initial kappa analysis with all 208 participants, a total of 325 matches were found within the data, 50 more than expected by chance. This provided a kappa value of 0.0527 with a 95% confidence interval of 0.0025 to 0.1028.

Data were further broken into 2 kappa analyses: 1 for individuals with limitations and 1 without. For the 15 participants with medical limitations, the kappa value was 0.2450 with a 95% confidence interval of 0.0615 to 0.4284 (P=0.0063). For the 198 individuals without limitations, the kappa value was 0.0373 with a 95% confidence interval of -0.0147 to 0.0893 (P=0.1488).

These kappa results were again further broken down to evaluate agreement between variables at each of the spinal transition zones individually (Table 1).

Due to the kappa analysis results of those individuals with significant medical limitations, a Fisher’s exact test also was used to determine whether the presence of medical limitations correlated to the number of matches present between structural findings and myofascial findings. This test showed a P-value for association between limitation status and number of matches of 0.1762 (Table 2).

(continued from page 18)
Discussion
Collecting data in 2 discreet sets, 1 for structural findings and the other for myofascial findings, allowed the authors to compare similar variables individually and to compare entire sets of findings. This means it is possible to observe a correlation between structural and myofascial findings and to observe whether or not the findings follow the compensatory patterns outlined by Zink.

The initial analysis of the raw data showed that there is a trend toward agreement of structural findings and myofascial findings when evaluating the 4 spinal transition zones. This was indicated by the percentage of matches found in the data, with a total of 325 matches out of a possible 832 matches. Based on chance alone, 275 matches would be expected within this data set. There were 50 more matches than expected, approximately a 6% increase over chance.

In addition, 14 of the 208 participants (6.731%) had 4 matches, indicating that their structural exam findings correlated perfectly with their myofascial findings at the 4 spinal transition zones. Furthermore, there were 24 individuals (11.538%) who exhibited a match in 3 of the 4 transition zones.

The overall kappa analysis yielded a value of 0.0527 with a 95% confidence interval of 0.0025 to 0.1028 ($P=0.0341$), which indicates a moderate statistical significance. This looked at all variables collectively to see if there was any correlation, not considering how many matches exist within a single data set. The results were further broken down to determine if clinical limitations had an impact on the correlation between structural and myofascial findings.

Individuals with limitations had a kappa value of 0.2450 with a 95% confidence interval of 0.0615 to 0.4284 ($P=0.0063$), which represented a fair correlation between data.

For the remaining 198 individuals, the kappa value was 0.0373 with a 95% confidence interval of -0.0147 to 0.0893 ($P=0.1488$), indicating no statistically significant correlation between structural and myofascial findings. Therefore, at least in the individuals with medical limitations, there is a correlation between structural findings and myofascial findings at the spinal transition zones.

The kappa analysis results were broken down further (Table 1), revealing that in individuals without limitations, there was a lack of statistical correlation at each of the spinal transition zones. In individuals with limitations, the previously identified correlation held true at each of the transition zones besides the lumbosacral transition zone.

Because these data indicated a correlation between findings only in individuals with medical limitations, a Fisher's exact test was performed to determine if having these limitations significantly increased the likelihood of a correlation between findings. In this test, the hypothesis was that having a significant medical history increased the participant’s chance of agreement between structural and myofascial findings, and it increased the chance of a higher number of matches. Results showed that although a trend may exist in favor of this hypothesis, this trend is not statistically significant (Table 2).

Table 1. Individual kappa statistics were broken down into individual spinal transition zones for both subgroups of data sets. The table shows the number of matches (0, 1, 2, 3, 4) by limitation status (N=208).

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>No limitations</td>
<td>35</td>
<td>67</td>
<td>56</td>
<td>23</td>
<td>12</td>
<td>193</td>
</tr>
<tr>
<td>Limitations</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>15</td>
</tr>
</tbody>
</table>

Table 2. Results from Fisher’s exact test for all participants. P-value from Fisher’s exact test for association between limitation status and number of matches: 0.1762.

<table>
<thead>
<tr>
<th>Region</th>
<th>No limitations (n=193)</th>
<th>Limitations (n=15)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kappa</td>
<td>95% CI</td>
</tr>
<tr>
<td>Craniocervical</td>
<td>-0.015 (-0.016, 0.086)</td>
<td>0.7719</td>
</tr>
<tr>
<td>Cervicothoracic</td>
<td>0.043 (-0.062, 0.148)</td>
<td>0.4017</td>
</tr>
<tr>
<td>Thoracolumbar</td>
<td>0.026 (-0.074, 0.126)</td>
<td>0.5952</td>
</tr>
<tr>
<td>Lumbosacral</td>
<td>0.095 (-0.010, 0.199)</td>
<td>0.0768</td>
</tr>
</tbody>
</table>

While evaluating the provided data, the authors were able to identify several areas of weakness or areas that can be improved in further studies.

(continued on page 21)
Although the total sample size of 208 was adequate, when broken down into 2 groups, the group of students with limitations only had 15 participants. Although it may be enough to show trends in data, this number is insufficient to determine statistical significance of trends identified within the data. This may stem from a somewhat arbitrary method of classifying participants into the category of limitations. When the data were collected during the initial health screening, any participant who was flagged for screening by a physician was placed into the category of limitations. Because of this classification, there is no way to accurately state that these limitations have a significant impact on the outcome of this study, and in future research it would be useful to have more information about these limitations.

The other major weakness the authors identified in the method of data collection is possible lack of interrater reliability and consistency. The large number of incoming students required several second-year medical students to be involved in performing the evaluations. Though all data collectors were similarly trained second-year osteopathic medical students, it is difficult to say that each person’s palpatory skills were similar enough to ensure a high level of consistency between raters.

Although these weaknesses may present significant limitations on the study, the authors feel that the trends identified still validly represent trends present in the overall population, and they plan to pursue them in future studies.

Since this is a retrospective study, it was used to identify these areas of weakness so that a much more precise method of data collection for a future study can be devised. For this further study, the authors plan to make several changes to ensure a higher level of precision and consistency in data collection.

The classification of medical limitation will be made using more specific findings on medical history to specify inclusion and exclusion criteria for the study groups. Using this method can ensure that the limitations being considered are likely to significantly affect outcomes, and it will allow trends to be identified within these specific limitations. This will also allow recruiting more participants that may fit into the limitations category so the sample size of that group can be increased.

To limit the error in interrater reliability, only 2 people will perform data collection on all future participants. One collector will perform the structural exam on every participant while the other data collector gathers myofascial data. This will ensure that all participants are evaluated in the same manner so that the data can be accurately evaluated.

To improve consistency and accuracy of the data collection, graders will be predoctoral teaching fellows within the Neurumusculoskeletal Medicine/Osteopathic Manipulative Medicine Department at WesternU/COMP who have completed their first 2 years of training and have participated in faculty-guided consistency training prior to the start of the study.

Once these limitations have been addressed, the accuracy and validity of the results will be greatly strengthened so that accurate conclusions can be drawn about trends present in the population and potentially correlate these findings to Zink’s Common Compensatory Patterns.

Conclusion

Despite the limitations of this pilot study, the authors have been able to identify several interesting trends in the data thus far, raising a few questions to be answered in a follow-up study. Though generalizations cannot be made about the overall population at this point, it seems that within the data presented here, there is a correlation between structural exam findings and myofascial restrictions at the spinal transition zones.
Based on this observation, it may be possible to screen for somatic dysfunction using a simple form of myofascial assessment. If so, it may allow for a quick assessment in the clinic or hospital setting and provide a great deal of information to help improve diagnosis and possibly treatment approaches to patient with somatic dysfunction. Also, this information may be used to improve osteopathic medical education and impact the clinical course of patients to improve outcomes and patient satisfaction.

References
Index by Author

Beatty, David R., DO

Blumer, Janice Upton, DO, FAAO

Brohard, Justin, DO

Byrnes, Jr., Thomas R., DO

Cuny, Lee Ann M., DO
Teaching osteopathic principles and practices: easy as ABCs. AAOJ. 2018;28(2):34-38.

Daniel, Todd, PhD

Goldman, Stephen I., DO, FAAO, FAOASM
Incorporating osteopathic philosophy into residency programs. AAOJ. 2018;28(3):7-11.

Heineman, Katherine, DO

Hostoffer, Robert W., DO, LhD, FAAP, FACOP, FACOI, FCCP

Hughes, Trista N.F., OMS IV, MPH
Teaching osteopathic principles and practices: easy as ABCs. AAOJ. 2018;28(2):34-38.

Kozar, Albert J., DO, FAOASM, R-MSK

Lamb, Teri, RN

Lewis, Drew D., DO, FAAO, FNAOME, FAOCOPMR, FAAPMR

Lui, Shanliang, MD, FAAPM, FAAPMR

Nuño, Victor, DO
Teaching osteopathic principles and practices: easy as ABCs. AAOJ. 2018;28(2):34-38.

Peña, Nicole Jeanine, DO
Teaching osteopathic principles and practices: easy as ABCs. AAOJ. 2018;28(2):34-38.

(continued on page 24)
Peppers, Brian P., DO, PhD

Pierce-Talsma, Stacey L., DO, MS-EdL, FNAOME
Teaching osteopathic principles and practices: easy as ABCs. AAOJ. 2018;28(2):34-38.

Rowane, Michael P., DO, MS, FAAFP, FAAO

Sanchez Jr., Jesús , DO

Summers, Garth K., DO

Thai, Richard, DO

Thomas, Kevin A., DO, MS

Tobey, A. Hope, DO, FAAP, FACOP

Van Buskirk, Richard L., DO, PhD, FAAO

Wilson, Daniel J., PhD

Index by Subject

#MeToo

abuse

Accreditation Council for Graduate Medical Education (ACGME)
Goldman SI. Incorporating osteopathic philosophy into residency programs. AAOJ. 2018;28(3):7-11.

ankyloglossia

autonomics

biomechanics

chronic pain

(continued from page 23)

circulation

clinical practice

common compensatory pattern

consent

counterstrain

discrimination

editorial

Blumer JU. View from the Pyramids. AAOJ. 2018;28(4):5.

Blumer JU. View from the Pyramids: white coats. AAOJ. 2018;28(3):5.

FAAO thesis

frenectomy

headgear

Blumer JU. View from the Pyramids. AAOJ. 2018;28(4):5.

health care

Blumer JU. View from the Pyramids. AAOJ. 2018;28(4):5.

herbal medicine

high-velocity, low-amplitude (HVLA)

innominate shear

Korr, Irvin M.

low back pain

lymphatic system

medical education

Blumer JU. View from the Pyramids: white coats. AAOJ. 2018;28(3):5.

medical ethics

motor vehicle crash

muscle energy

myofascial release

myofascial restrictions

Nassar, Larry

National Institutes of Health

National Library of Medicine

original contribution

original research

orthodontic intervention

osteopathic cranial manipulative medicine

osteopathic manipulative treatment

osteopathic philosophy
Goldman SI. Incorporating osteopathic philosophy into residency programs. AAOJ. 2018;28(3):7-11.
osteopathic residency
Goldman SI. Incorporating osteopathic philosophy into residency programs. AAOJ. 2018;28(3):7-11.

Oswestry Disability Index

pediatric headache

physicians’ health

pilot study

retrospective chart review

rural medicine

sacroiliac shear

touch

traumatic brain injury

visceral manipulation

Zink, J. Gordon

screening

segmental spinal somatic dysfunctions

short leg syndrome

special communication

Goldman SI. Incorporating osteopathic philosophy into residency programs. AAOJ. 2018;28(3):7-11.

spinal decompression

Still technique

Still, Andrew Taylor
Blumer JU. View from the Pyramids. AAOJ. 2018;28(4):5.

thoracic inlet

tongue-tie
Course Description
This course is designed to enhance attendees’ palpatory skills (tissue texture, asymmetry and restriction of motion of both somatic and visceral interconnected structures); enhance knowledge of related somatic/visceral anatomy with fascial continuity via traditional Chinese medicine energy channel mapping; and provide a framework for cross-organ symptomatology and somatic dysfunction, bridging gaps between internal medicine subspecialties and neuromusculoskeletal medicine.

Prerequisite
Registrants should have completed a basic cranial course and have a grounding in balanced ligamentous tension, ligamentous articular strain and visceral techniques.

Course Times
Friday and Saturday from 8 a.m. to 5:30 p.m.
Sunday from 8 a.m. to 12:15 p.m.

Continuing Medical Education
20 credits of AOA Category 1-A CME anticipated.

Meal Information
Morning coffee and tea will be provided. Lunch will be provided Friday and Saturday.

Course Location
UNTHSC Texas College of Osteopathic Medicine
3500 Camp Bowie Blvd., MET – 470 Lab
Fort Worth, TX 76107

Travel Arrangements
Contact Tina Callahan of Globally Yours Travel at (480) 816-3200 or globallyyourstravel@cox.net.

Registration Form
Viscerosomatic Release: A Systemic Model for Neuromusculoskeletal Medicine
Feb. 22-24, 2019

Name: ___________________________ AOA No.: ________

Nickname for badge: ___________________________

Street address: ___

__

City: __________________________ State: ______ ZIP: ______

Phone: ______________________ Fax: ______________________

Email: __________________________

I hereby authorize the American Academy of Osteopathy to charge the above credit card for the amount of the course registration.

Signature: __________________________

☐ I am a practicing health care professional.
☐ I am a resident or intern.
☐ I am an osteopathic or allopathic medical student.

The AAO accepts check, Visa, MasterCard and Discover payments in U.S. dollars. The AAO does not accept American Express.

Credit card No.: __________________________

Cardholder’s name: __________________________

Expiration date: ___________ 3-digit CVV No.: ______

Billing address (if different): __

I hereby authorize the American Academy of Osteopathy to charge the above credit card for the amount of the course registration.

Signature: __________________________

View the AAO’s cancellation and refund policy.

Register online at www.academyofosteopathy.org, or submit this registration form and your payment by email to GWatts@academyofosteopathy.org; by mail to the American Academy of Osteopathy, 3500 DePauw Blvd., Suite 1100, Indianapolis, IN 46268-1136; or by fax at (317) 879-0563.
BRAIN THERAPY FOR NEONATAL REFLEXES & LIFELONG REFLEXES IN ADULTS AND CHILDREN

Course Description
Many children and adults have neurological disorders, learning disabilities or cognitive challenges. Studies show these individuals often have retained or reoccurring neonatal/primary reflexes. Optimally, these reflexes are inhibited in the first months of life. Neonatal reflex inhibition allows for more sophisticated neurological structures to develop.

Adults can see the reoccurrence of these neonatal/developmental reflexes in many pathologies, including trauma, PTSD, Parkinson’s, stroke, dementia, etc.

In children, these reflexes can be found in many dysfunctions including learning disabilities, sensory integration dysfunctions, trauma, cerebral palsy, ADD/ADHD, concentration problems, auditory, visual or vestibular issues, poor postural control, dyslexia, speech language delays, ASD, Down syndrome, etc.

There are approximately 28 neonatal reflexes at birth. We will go over most of these reflexes using quick, precise and efficient osteopathic CNS techniques to help integrate them. Inhibitory movement patterns will also be presented.

Prerequisite
Registrants must have taken Dr. Chikly’s “Brain 1” course or at least two cranial courses.

Continuing Medical Education
24 credits of NMM-specific AOA Category 1-A CME anticipated.

Course Times
Sunday and Monday from 8:30 a.m. to 6 p.m.
Tuesday from 8:30 a.m. to 4:30 p.m.

Meal Information
Breakfast and lunch are on your own. Coffee and tea will be provided.

Course Location
Rosen Shingle Creek, 9939 Universal Blvd., Orlando, FL 32819
Make your hotel reservations online now. To make your reservations by phone, call 1-866-996-6338 and use booking code 35809.

Travel Arrangements
Contact Tina Callahan of Globally Yours Travel at (480) 816-3200 or globallyyourstravel@cox.net.

Registration Form
Brain Therapy for Neonatal Reflexes & Lifelong Reflexes in Adults and Children
March 10-12, 2019

Name: ______________________ AOA No.: ______________

Nickname for badge: __

Street address: ___

City: __________________ State: ____ ZIP: ___________

Phone: ______________ Fax: ___________________________

Email: __________________

Course Director
Bruno Chikly, MD, DO (France), is a graduate of the medical school at St. Antoine Hospital in Paris, where his internship in general medicine included training in endocrinology, surgery, neurology and psychiatry.

Dr. Chikly also has the French equivalent of a master’s degree in psychology. In 2009, he received a doctorate in osteopathy from CROMON (Holistic Research Center for Osteopathic and Natural Medicine) and AIROP (Italian Association for Postural Occlusion Re-education) in Italy, and he is on the French National Registry of Osteopathy.

Dr. Chikly is an internationally renowned educator, lecturer and writer. He is the author of the book Silent Waves: The Theory and Practice of Lymph Drainage Therapy, as well as the creator of a DVD titled Dissection of the Brain and Spinal Cord, and he is working on a book about osteopathic manipulation and the brain. He lives in Scottsdale, Arizona, with his wife and partner, Alaya.

Registration Fees

<table>
<thead>
<tr>
<th>Registration Fees</th>
<th>On or before Jan. 17, 2019</th>
<th>Jan. 18 through Feb. 22, 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>With Convo</td>
<td>Without Convo</td>
</tr>
<tr>
<td>Academy member in practice</td>
<td>$828</td>
<td>$920</td>
</tr>
<tr>
<td>Resident or intern member</td>
<td>$648</td>
<td>$720</td>
</tr>
<tr>
<td>Nonmember practicing DO or other health care professional</td>
<td>$1,098</td>
<td>$1,220</td>
</tr>
<tr>
<td>Nonmember resident or intern</td>
<td>$918</td>
<td>$1,020</td>
</tr>
</tbody>
</table>

1 Registrations received after Feb. 22 will be processed on-site, incurring a $150 late fee. 1 The AAO’s associate members, international affiliates and supporter members are entitled to register at the same fees as full members. This course is not appropriate for students.

☐ I am a practicing health care professional.
☐ I am a resident or intern.
☐ I will attend the AAO’s 2019 Convocation.

The AAO accepts check, Visa, MasterCard and Discover payments in U.S. dollars. The AAO does not accept American Express.

Credit card No.: ______________________ 3-digit CVV No.: ___________

Cardholder’s name: ______________________

Expiration date: ______________

Billing address (if different): ______________________

I hereby authorize the American Academy of Osteopathy to charge the above credit card for the amount of the course registration.

Signature: ______________________

View the AAO’s cancellation and refund policy.

Register online at www.academyofosteopathy.org, or submit this registration form and your payment by email to GWatts@academyofosteopathy.org; by mail to the American Academy of Osteopathy, 3500 DePauw Blvd., Suite 1100, Indianapolis, IN 46268-1136; or by fax at (317) 879-0563.

AAO’s cancellation and refund policy

- Full refund: If written request is received by January 17, 2019.
- Partial refund: If written request is received between January 18 and February 22, 2019. Non-refundable if received after February 22, 2019.

- Deadline: All requests for refunds must be received by March 1, 2019.

- Late fee: A $150 late fee will be assessed for registrations received after February 22, 2019.

- Non-member fees: Non-members are entitled to register at the same fees as full members. This course is not appropriate for students.

AAO’s photo release statement

I hereby authorize the American Academy of Osteopathy and other health care professionals to use my photograph and likeness for publicity and educational purposes. This agreement is not transferable and will remain in effect for the duration of the AAOM and the AAO’s annual convention. I understand that I will not receive any compensation for my participation and that any films, recordings or publications produced as a result of my participation will become the exclusive property of the American Academy of Osteopathy.
Course Description
The Fascial Distortion Model is a model of thinking that allows clinicians to utilize patients’ gestures and verbal descriptions to focus soft tissue treatment for fast and effective relief of pain. By incorporating the FDM with traditional OMM techniques, powerful results can be achieved. By applying the FDM philosophy to your practice, you can decrease treatment time and improve outcomes.

No previous experience with the FDM will be required. For those familiar with the FDM, this is an opportunity to gain a deeper understanding. This will be an excellent introduction to the model and a good starting point on the journey of incorporating FDM into your practice. The second part of the course will be focused on incorporating the FDM with concepts such as visceral manipulation, cranial manipulation, dry needling, and frequency specific microcurrent therapy. The use of FDM in the pediatric population and FDM treatment of fractures also will be discussed.

Continuing Medical Education
24 credits of NMM-specific AOA Category 1-A CME anticipated.

Course Times
Sunday through Tuesday from 8 a.m. to 5 p.m.

Meal Information
Breakfast and lunch are on your own. Coffee and tea will be provided.

Course Location
Rosen Shingle Creek, 9939 Universal Blvd., Orlando, FL 32819
Make your hotel reservations online now. To make your reservations by phone, call 1-866-996-6338 and use booking code 35809.

Travel Arrangements
Contact Tina Callahan of Globally Yours Travel at (480) 816-3200 or globallyyourstravel@cox.net.

Course Director
Todd A. Capistrant, DO, MHA, earned both his doctor of osteopathic medicine degree and his master in health administration degree in 1997 from the Des Moines (Iowa) University College of Osteopathic Medicine. He is one of only three physicians in the United States who are currently certified to teach seminars on the FDM, and he is the president of the American Fascial Distortion Model Association.

Dr. Capistrant specializes in OMM, and he is certified by the American Board of Family Medicine. He is a member of the growing OMM department at the Tanana Valley Clinic in Fairbanks, Alaska, and he serves as a regional dean for the Pacific Northwest University of Health Sciences, College of Osteopathic Medicine in Yakima, Washington.

Registration Fees

<table>
<thead>
<tr>
<th></th>
<th>On or before Jan. 17, 2019</th>
<th>Jan. 18 through Feb. 22, 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academy member in practice¹</td>
<td>$828</td>
<td>$920</td>
</tr>
<tr>
<td>Resident or intern member</td>
<td>$648</td>
<td>$720</td>
</tr>
<tr>
<td>Student member</td>
<td>$378</td>
<td>$420</td>
</tr>
<tr>
<td>Nonmember practicing DO or other health care professional</td>
<td>$1,098</td>
<td>$1,220</td>
</tr>
<tr>
<td>Nonmember resident or intern</td>
<td>$918</td>
<td>$1,020</td>
</tr>
<tr>
<td>Nonmember student</td>
<td>$648</td>
<td>$720</td>
</tr>
</tbody>
</table>

¹ Registrations received after Feb. 22 will be processed on-site, incurring a $150 late fee. ¹ The AAO’s associate members, international affiliates and supporter members are entitled to register at the same fees as full members.

☐ I am a practicing health care professional.
☐ I am a resident or intern.
☐ I am an osteopathic or allopathic medical student.
☐ I will attend the AAO’s 2019 Convocation.

The AAO accepts check, Visa, MasterCard and Discover payments in U.S. dollars. The AAO does not accept American Express.

Credit card No.: ____________________________
Cardholder’s name: ____________________________
Expiration date: _____________ 3-digit CVV No.: _____________
Billing address (if different): ____________________________

I hereby authorize the American Academy of Osteopathy to charge the above credit card for the amount of the course registration.

Signature: ____________________________

Registration Form
Fascial Distortion Model—Beyond the Basics: Osteopathy and FDM moving forward together!
March 10-12, 2019

Name: ____________________________ AOA No.: ______
Nickname for badge: ____________________________
Street address: ____________________________
City: ____________________________ State: _____ ZIP: ______
Phone: ____________________________ Fax: ____________________________
Email: ____________________________

View the AAO’s cancellation and refund policy.

View the AAO’s photo release statement.
Course Description
In this course, attendees will explore the anatomy and function of the lymphatic system, in relationship to the visceral movement. When the lymphatics of the viscera are obstructed, the lymphatic and interstitial fluids back up, increasing the tension in the visceral attachments. This is associated with a decreased mobility of the organs, a visceral dysfunction. Of the nearly 450 lymph nodes in the body, about two-thirds are associated with the viscera.

Osteopathic approaches to the lymphatics began with Dr. Still. Those approaches were passed on to his students such as William Garner Sutherland, John Martin Hiss, Elmer Barber, Frank Chapman and Frank P. Millard. Some of these students expanded on what they had learned from Still. Only in the last 40 years has modern science discovered that the lymphatic system actually contracts and propels the lymphatic fluids, through what is called lymphangions, or “lymph hearts.” This contraction and movement is palpable and useful in diagnosing and treating a large range of osteopathic and medical issues.

Continuing Medical Education
22 credits of NMM-specific AOA Category 1-A CME anticipated.

Course Times
Sunday and Monday from 8:30 a.m. to 5:30 p.m.
Tuesday from 8:30 a.m. to 4:30 p.m.

Meal Information
Breakfast and lunch are on your own. Coffee and tea will be provided.

Course Location
Rosen Shingle Creek, 9939 Universal Blvd., Orlando, FL 32819
Make your hotel reservations online now.
To make your reservations by phone, call 1-866-996-6338 and use booking code 35809.

Travel Arrangements
Contact Tina Callahan of Globally Yours Travel at (480) 816-3200 or globallyyourstravel@cox.net.

Registration Fees
<table>
<thead>
<tr>
<th></th>
<th>On or before Jan. 17, 2019</th>
<th>Jan. 18 through Feb. 22, 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Save 10% when you register for the AAO’s 2019 Convocation.</td>
<td>With Convo</td>
<td>Without Convo</td>
</tr>
<tr>
<td>Academy member in practice</td>
<td>$751.50</td>
<td>$835</td>
</tr>
<tr>
<td>Resident or intern member</td>
<td>$571.50</td>
<td>$635</td>
</tr>
<tr>
<td>Student member</td>
<td>$301.50</td>
<td>$335</td>
</tr>
<tr>
<td>Nonmember practicing DO or other health care professional</td>
<td>$1,021.50</td>
<td>$1,135</td>
</tr>
<tr>
<td>Nonmember resident or intern</td>
<td>$841.50</td>
<td>$935</td>
</tr>
<tr>
<td>Nonmember student</td>
<td>$571.50</td>
<td>$635</td>
</tr>
</tbody>
</table>

Registrations received after Feb. 22 will be processed on-site, incurring a $150 late fee. 1 The AAO’s associate members, international affiliates and supporter members are entitled to register at the same fees as full members.

Registration Form
Visceral Lymphatics
March 10-12, 2019

Name: ___________________________ AOA No.: ____________

Nickname for badge: ___________________________

Street address: ___

City: __________________________________ State: _____ ZIP: __________

Phone: __________________ Fax: __________________

Email: __________________________

I hereby authorize the American Academy of Osteopathy to charge the above credit card for the amount of the course registration.

Signature:

I am a practicing health care professional.
☐ I am a resident or intern.
☐ I am an osteopathic or allopathic medical student.
☐ I will attend the AAO’s 2019 Convocation.

The AAO accepts check, Visa, MasterCard and Discover payments in U.S. dollars. The AAO does not accept American Express.

Credit card No.: ___________________________

Cardholder’s name: ___________________________

Expiration date: _____________ 3-digit CVV No.: __________

Billing address (if different): ___________________________

I hereby authorize the American Academy of Osteopathy to charge the above credit card for the amount of the course registration.

Signature: ___________________________

View the AAO’s cancellation and refund policy.

Register online at www.academyofosteopathy.org, or submit this registration form and your payment by email to GWatts@academyofosteopathy.org; by mail to the American Academy of Osteopathy, 3500 DePauw Blvd., Suite 1100, Indianapolis, IN 46268-1136; or by fax at (317) 879-0563.
Jan. 17-20, 2019
Osteopathy’s Promise to Children
The Power of the Natural Autoregulation System of a Human Body and the Role of Stress and Emotion on Balance and Health: The Key to Practice Osteopathy for Adults And Children
Course director: Philippe Druelle, DO (F-Qc), DScO
Osteopathic Center San Diego
No CME credits anticipated.
Learn more and register at the-promise.org/cme/.

Feb. 8-10, 2019
Florida Academy of Osteopathy
Techniques of the Osteopathic Masters Course—Techniques for the Body
Course director: Wm. Thomas Crow, DO, FAAO
Florida Hospital East Orlando
20 credits of AOA Category 1-A CME anticipated
To learn more or register, call Lisa Belliveau at 727-581-9069.

Feb. 14-17, 2019
Osteopathy’s Promise to Children
Advanced Explorations in Pediatric Osteopathy: Innovative Healing Approaches to Support Rapid Transformation in the Child
Course director: Shawn K. Centers, DO, MH, FACOP
Osteopathic Center San Diego
20 credits of AOA Category 1-A CME anticipated
Learn more and register at the-promise.org/cme/.

March 1-2, 2019
Osteopathy’s Promise to Children
Integrated Osteopathic Dental Team: Expanding the Integrative Team Approach to Sleep Disturbances
Course directors: Julie Mai, DO, and Darick Nordstrom, DDS
Osteopathic Center San Diego
16 credits of AOA Category 1-A CME anticipated
Learn more and register at the-promise.org/cme/.

April 3-7, 2019
American Osteopathic Association of Proliferation and Regenerative Medicine
Spring 2019 Proliferation and Cadaver Lab
Program chair: Gerald Harris, DO
The Westin Austin Downtown
Austin, Texas
27 credits of AOA Category 1-A CME anticipated
Learn more and register at www.prolotherapycollege.org.

May 3-5, 2019
Osteopathy’s Promise to Children
Intermediate Cranial Course: Expanding the Osteopathic Concept Beyond the Basics
Course directors: Raymond J. Hruby, DO, MS, FAAODist, and R. Mitchell Hiserote, DO
Osteopathic Center San Diego
24 credits of AOA Category 1-A CME anticipated
Learn more and register at the-promise.org/cme/.

June 7-9, 2019
Rocky Vista University College of Osteopathic Medicine
Still Exaggeration Technique
Course director: Jerry Dickey, DO
Parker, Colorado
21 credits of AOA Category 1-A CME anticipated
Learn more and register at www.stillexaggeration.com.

July 17-21, 2019
Osteopathy’s Promise to Children
Foundations of Osteopathic Cranial Manipulative Medicine (The 40-Hour Basic Cranial Course)
Course director: R. Mitchell Hiserote, DO
Osteopathic Center San Diego
40 credits of AOA Category 1-A CME anticipated
Learn more and register at the-promise.org/cme/.

Sept. 7, 2019
Osteopathy’s Promise to Children
OMT for Systemic Disorders and Physiological Functions: Cardiopulmonary & Immune Systems
Course director: Hollis H. King, DO, PhD, FAAO
Osteopathic Center San Diego
8 credits of AOA Category 1-A CME anticipated
Learn more and register at the-promise.org/cme/.

Oct. 5, 2019
Osteopathy’s Promise to Children
OMT for Systemic Disorders and Physiological Functions: Gastrointestinal & Nervous Systems
Course director: Hollis H. King, DO, PhD, FAAO
Osteopathic Center San Diego
8 credits of AOA Category 1-A CME anticipated
Learn more and register at the-promise.org/cme/.

Visit www.academyofosteopathy.org/affiliate-cme for additional listings.